Q & A details -What advantages does alloy have over pure metal?
Your current position: Tech Community > Answer > Q & A details

What advantages does alloy have over pure metal?

1 answer Reward0 Remaining Time 0 Day

What advantages does alloy have over pure metal? 

Other answers

  • 0861788249

    0861788249 2017-01-17 08:59:27

    Alloying one metal with other metal(s) or non metal(s) often enhances its properties. For instance, steel is stronger than iron, its primary element. The physical properties, such as density, reactivity, Young's modulus, and electrical and thermal conductivity, of an alloy may not differ greatly from those of its elements, but engineering properties, such as tensile strength and shear strength may be substantially different from those of the constituent materials. This is sometimes due to the sizes of the atoms in the alloy, since larger atoms exert a compressive force on neighboring atoms, and smaller atoms exert a tensile force on their neighbors, helping the alloy resist deformation. Alloys may exhibit marked differences in behavior even when small amounts of one element occur. For example, impurities in semi-conducting ferromagnetic alloys lead to different properties, as first predicted by White, Hogan, Suhl, Tian Abrie and Nakamura. -Unlike pure metals, most alloys do not have a single melting point. Instead, they have a melting range in which the material is a mixture of solid and liquid phases. The temperature at which melting begins is called the solidus and the temperature when melting is complete is called the liquidus. However, for most alloys there is a particular proportion of constituents which give them a single melting point or (rarely) two. This is called the alloy's eutectic mixture. -Alloy steel is steel alloyed with other elements in amounts of between 1 and 50% by weight to improve its mechanical properties. Alloy steels are broken down into two groups: low alloy steels and high alloy steels. The differentiation between the two is somewhat arbitrary; Smith and Hashemi define the difference at 4%, while Degarmo, et. al., define it at 8%.[1][2] However, most commonly alloy steel refers to low alloy steel. These steels have greater strength, hardness, hot hardness, wear resistance, hardenability, or toughness compared to carbon steel. However, they may require heat treatment in order to achieve such properties. Common alloying elements are molybdenum, manganese, nickel, chromium, vanadium, silicon and boron.

    [ More ] [ Close ]


Member login